初中数学因式分解的技巧
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。下面整理了因式分解的技巧,供大家参考。
因式分解的技巧 1.提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
2.提取公因式法分解因式的解题步骤 (1)提公因式。把各项中相同字母或因式的最低次幂的积作为公因式提出来;当系数为整数时,还要把它们的最大公约数也提出来,作为公因式的系数;当多项式首项符号为负时,还要提出负号 (2)用公因式分别去除多项式的每一项,把所得的商的代数和作为另一个因式,与公因式写成积的形式。 因式分解的一般步骤 (1)如果多项式的各项有公因式,那么先提取公因式。 (2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式 (3)分解因式必须分解到每一个因式都不能再分解为止。
因式分解的口诀 口诀一 先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。 口诀二 两式平方符号异,因式分解你别怕。 两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。 因式分解能与否,符号上面有文章。 同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
因式分解的方法与技巧有哪些
把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,因式分解的方法有十字相乘法、提公因式法、待定系数法等。 十字相乘法 1.十字相乘法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
其实就是运用乘法公式运算来进行因式分解。
2.用十字相乘法分解公因式的步骤: (1)把二次项系数和常数项分别分解因数; (2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数; (3)确定合适的十字图并写出因式分解的结果; (4)检验。 提公因式法 1.提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。 2.提取公因式法分解因式的解题步骤 (1)提公因式。把各项中相同字母或因式的最低次幂的积作为公因式提出来;当系数为整数时,还要把它们的最大公约数也提出来,作为公因式的系数;当多项式首项符号为负时,还要提出负号 (2)用公因式分别去除多项式的每一项,把所得的商的代数和作为另一个因式,与公因式写成积的形式。
待定系数法 1.待定系数法:待定系数法是初中数学的一个重要方法。用待定系数法分解因式,就是先按已知条件把原式假设成若干个因式的连乘积,这些因式中的系数可先用字母表示,它们的值是待定的,由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值。 2.使用待定系数法解题的一般步骤是: (1)确定所求问题含待定系数的一般解析式; (2)根据恒等条件,列出一组含待定系数的方程; (3)解方程或消去待定系数,从而使问题得到解决。
因式分解口诀 两式平方符号异,因式分解你别怕。 两底和乘两底差,分解结果就是它。 两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。 同和异差先平方,还要加上正负号。 同正则正负就负,异则需添幂符号。
因式分解常用公式 1.平方差公式:a²-b²=(a+b)(a-b)。 2.完全平方公式:a²+2ab+b²=(a+b)²。 3.立方和公式:a³+b³=(a+b)(a²-ab+b²)。 4.立方差公式:a³-b³=(a-b)(a²+ab+b²)。
5.完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。 6.完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。 7.三项完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。 8.三项立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。
因式分解的基本方法
因式分解的基本方法:1、提公因式法,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。2、应用公式法,最常用的是“平方差公式、完全平方公式”。
3、分组分解法,通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为“1+3”式和“2+2”式。
4、待定系数法,就是先按已知条件把原式假设成若干个因式的连乘积,这些因式中的系数可先用字母表示,它们的值是待定的,由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值。5、十字相乘法,十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。